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Exploring the Relationship between 2D/3D
Convolution for Hyperspectral Image

Super-Resolution
Qiang Li, Qi Wang, Senior Member, IEEE, and Xuelong Li, Fellow, IEEE

Abstract—Hyperspectral image super-resolution (SR) methods
based on deep learning have achieved significant progress re-
cently. However, previous methods lack the joint analysis between
spectrum and horizontal or vertical direction. Besides, when
both 2D and 3D convolution are in the network, the existing
models can not effectively combine the two. To address these
issues, in this paper, we propose a novel hyperspectral image SR
method by exploring the relationship between 2D/3D convolution
(ERCSR). Our method alternately employs 2D and 3D units to
solve the problem of structural redundancy by sharing spatial
information during reconstruction for existing model, which can
enhance the learning ability of 2D spatial domain. Importantly,
compared with the network using 3D unit, i.e., 2D unit is replaced
by 3D unit, it can not only reduce the size of the model, but
also improve the performance of the model. Furthermore, to
exploit the spectrum fully, the split adjacent spatial and spectral
convolution (SAEC) is designed to parallelly explore information
between spectrum and horizontal or vertical direction in space.
Experiments on widely used benchmark datasets demonstrate
that the proposed approach outperforms state-of-the-art SR
algorithms across different scales in terms of quantitative and
qualitative analysis.

Index Terms—Hyperspectral image, super-resolution (SR),
convolutional neural networks (CNNs), hybrid convolution, split
adjacent spatial and spectral convolution (SAEC).

I. INTRODUCTION

HYPERSPECTAL imaging system gathers tens to hun-
dreds of spectral bands from the object area to obtain

hyperspectral image. While collecting the spatial information,
the spectrum is also obtained. This has greatly improved the
degree of information richness, so it is widely applied in min-
eral exploration [1], medical diagnosis [2], etc. Nevertheless,
the physical limitations of spectral sensors often hinder the
acquisition of high-resolution hyperspectral image in practical
applications. It affects the subsequent analysis for high-level
tasks, such as image classification [3], [4], change detection
[5], and anomaly detection [6].

To solve this challenge, the hyperspectral image super-
resolution (SR) is proposed [7]–[12]. It aims to restore LR
hyperspectral image to high-resolution (HR) hyperspectral
image, so as to better and accurately describe objects. Since
substances behave distinction in different bands of spectral
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signals, usually, some bands in hyperspectral image are select
to examine in practical applications [13]–[16]. Thus, unlike
natural image (RGB image) used for SR task, the spectral
distortion needs to be considered for hyperspectral image SR.
It means that the spectral distortion should be reduced as much
as possible during reconstruction, which is also an important
index to evaluate the restored hyperspectral image.

Hyperspectral image usually divides more bands within the
limited spectrum to improve spectral resolution. As a result,
its spatial resolution is lower than that of natural images or
multispectral images. Inspired by this discovery, the researches
propose many SR methods by fusing LR hyperspectral image
with its corresponding HR RGB image [17], [18]. These
methods generate the corresponding RGB image by integrating
the HR hyperspectral image and its spectral dimension using
same camera spectral response (CSR) [19]. Although the
approaches have obtained good results, the differences of CSR
in datasets or scenes are ignored, obtaining poor robustness.
Later, Fu et al. [20] design an automatic CSR selection
mechanism to address the above trouble. Nevertheless, the
fusion strategy claims that the image pair is well matched in
different datasets or scenes, which makes it extremely difficult
in practical applications. Thus, the hyperspectral image SR is
executed without using fusion strategy in our paper.

Due to the strong representation ability of convolutional
neural networks (CNNs), the performance of natural image SR
has been greatly advanced in recent years [21], [22]. It aims to
learn the mapping function between LR and HR RGB image
by means of supervision. Aiming at the inherent properties of
hyperspectral image, various methods using 2D convolution
are designed by referring to natural image SR methods [23]–
[26]. For example, inspired by deep recursive residual network
[27], Li et al. [24] present a new grouped recursive module
and embed it into the global residual structure (GDRRN). To
avoid the spectral distortion, the network joints Spectral Angle
Mapper (SAM) with Mean Squared Error (MSE) to optimize
the network parameters during reconstruction. Nevertheless,
the designed loss function influences the performance of
spatial resolution. Li et al. [25] propose deep spectral dif-
ference network. After achieving the spatial reconstruction of
hyperspectral image, similarly, the post-processing is carried
out to avoid the spectral distortion. As spectral information is
not utilized, the type of above algorithms generally has poor
performance.

Since hyperspectral image contains abundant spectral infor-
mation, the methods employing 3D convolution have become a
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research topic, which is based on the fact that spectral features
can improve the performance for spatial resolution [28]–[30].
Mei et al. [28] first propose 3D full CNN (3D-FCNN) to
explore both spatial context and spectral correlation. Because
the spectral information is considered, the network obtains
better performance. Yang et al. [29] develop multi-scale
wavelet 3D convolutional neural network with embedding
and predicting subnet. The network requires pre-processing
and post-processing in terms of wavelet transformation. All
the methods described above use regular 3D convolution
to process hyperspectral image, and there are many similar
methods, such as [31] and [32]. Different from 2D convolution,
a regular 3D convolution is performed by convoluting 3D
kernel and feature map. It results in a significant increase
in network parameters. Considering this shortcoming, the
researchers modify the filter k × k × k as k × 1 × 1 and
1 × k × k [30], [33]–[35]. Typical algorithms have SSRNet
[33] and MCNet [30]. By doing so, the network parameters
are reduced dramatically, making it possible to design the
network more deeply. As for SSRNet algorithm [33], all
layers are conducted by above operation. However, it generates
redundant information in feature maps along the spectral
dimension due to the existence of high similarity among bands.
Moreover, when the model can explore spectral dimension,
it lacks of more learning ability in space. Later, Li et al.
[30] propose mixed convolution module (MCNet) by sharing
spatial information to design several 2D and 3D units. The
model effectively addresses the existing drawbacks in SSRNet.
However, it adopts parallel structure to extract the features,
resulting in module redundancy.

With respect to the above descriptions, it can be concluded
that how to effectively combine the 2D and 3D unit still needs
more research efforts. Additionally, all the above methods only
consider the relationship of space and spectrum using such
convolution operation (i.e., the filter is k×1×1 and 1×k×k),
ignoring the exploration between spectrum and horizontal or
vertical direction in space (see Fig. 1). Motivated by these
discoveries, in this paper, hyperspectral image SR is achieved
via exploring the relationship between 2D/3D convolution
(ERCSR). In summary, our main contributions are as follows:
• A new structure that appears alternately through 2D

and 3D units is proposed. Under sharing spatial information
between 2D and 3D unit, it overcomes the problem of redun-
dancy caused by parallel structure in MCNet [30]. Besides,
it also improves the learning ability of spatial domain via
designing more 2D units.
• The split adjacent spatial and spectral convolution (SAEC)

is proposed. By separating the filter, it fully explores the
potential features between spectrum and horizontal or vertical
direction in space, which alleviates the spectral distortion of
the reconstructed image.
• Extensive experiments on three public datasets demon-

strate that the proposed model outperforms the state-of-the-
art methods across different scales in both quantitatively and
qualitatively.

The remainder of this paper is organized as follows: Section
II describes several existing typical networks. Section III
introduces the proposed ERCSR, including network structure,
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Fig. 1. Illustration of hyperspectral image cube with spatial convolution in
space plane, spectrum-horizontal convolution in spectrum-horizontal plane,
and spectrum-vertical convolution in spectrum-vertical plane, where W and
H are the width and height of each band in the spatial domain, L represents
the total number of the bands.

enhanced hybrid convolution module, etc. Then, experiments
on public datasets are performed to verify our method in
Section IV. Finally, the conclusion is given in Section V.

II. RELATED WORK

In this section, we describe in detail the existing typical
networks applying 2D and 3D convolution, including EDSR
[36], 3D-FCNN [28], SSRNet [33], and MCNet [30]. Fig.
2 shows simplified structure of these methods. Here, 2D
and 3D unit refer to the use of 2D and 3D convolution in
corresponding unit, respectively.

A. EDSR

As for EDSR algorithm [36], the whole model uses 2D
convolution to explore the natural image. The network is
stacked by 16 residual units. Its simplified structure is shown
Fig. 2(a). With respect to the unit, it contains two 2D convolu-
tions, ReLU activation function, and local residual connection,
whose mathematical formulation is presented in Table I. For
hyperspectral image SR, the model adopting 2D convolution
cannot effectively exploit spectral information to enhance the
learning ability of 2D spatial domain. Therefore, the algorithm
to process hyperspectral image SR has poor performance.

B. 3D-FCNN

Since hyperspectral image has rich spectral information
[37], [38], Mei [28] et al. first introduce regular 3D convolu-
tion to implement hyperspectral image SR (3D-FCNN). The
model structure contains four convolution layers. Similar to
SRCNN [39], the difference is that 3D convolution is adopted
for each layer instead of 2D convolution (see Fig. 2(b)). As for
main module in this network, it is composed of 3D convolution
and ReLU, as shown in Table I. As all convolution operations
are not padded, the size of the reconstructed hyperspectral
image is changed. Moreover, this method lacks of residual
connection. As a result of the above problems, the performance
of the algorithm is not so ideal. However, this novel approach
has inspired many scholars to design networks in this way,
such as [30] and SSRNet [33].
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(a) EDSR
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(b) 3D-FCNN and SSRNet
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(c) ERCSR (ours)
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(d) MCNet

Fig. 2. Simplified structure of several methods.

TABLE I
MATHEMATICAL FORMULATIONS OF 2D AND 3D UNIT IN EDSR [36], 3D-FCNN [28], SSRNET [33], AND MCNET [30]. conv2D(·) AND conv3D(·)
DENOTE FUNCTIONS OF 2D AND 3D CONVOLUTION, RESPECTIVELY. σ(·) IS RELU ACTIVATION FUNCTION. R(·) REPRESENTS RESHAPE OPERATION.

Method
Key Strategy

Mathematical Formulation
2D Unit 3D Unit

EDSR [36]
two 2D convolutions + ReLU +

local residual learning
— y = σ(conv2D(σ(conv2D(x)))) + x

3D-FCNN [28] — 3D convolution + ReLU y = σ(conv3D(x))

SSRNet [33] —
four 3D convolutions + four ReLUs +

local residual learning

y = σ(conv3D((σ(conv3D(x)))))

z = σ(conv3D(σ(conv3D(y)))) + x

MCNet [30] two 2D convolutions + ReLU
two 3D convolutions + two ReLUs +

local residual learning

y = σ(conv3D(σ(conv3D(x)))) + x

z = R(conv2D(σ(conv2D(R(y)))))

C. SSRNet

While many deep learning methods applying 3D convo-
lution are proposed, there is main issue that using regular
3D convolution obviously leads to a significant increase in
network parameters. This prevents the network from being
designed deeper. Considering this limitation, Wang et al.
develop spatial-spectral residual network (SSRNet) [33]. The
network splits regular 3D kernel 3 × 3 × 3 into 1 × 3 × 3
and 3× 1× 1, namely separable 3D convolution [40], to ex-
tract spatial and spectral features, respectively. It dramatically
reduces unaffordable memory usage and training time. Note
that separable 3D convolution is a special form of regular
3D convolution. The whole network is conducted by three
spatial-spectral residual modules, and each module is mainly
composed of three 3D units. As can be seen from Table I and
Fig. 2(b), when the model can explore spectral dimension, it
lacks of more learning ability in space, i.e., it treats both space
and spectrum with same number of layers. This problem also
exists in some literature [28], [29], [32].

D. MCNet

To tackle the issue like SSRNet, Li et al. propose mixed
2D/3D convolution network (MCNet) [30]. This method
adopts four mixed convolution modules to distinguish the
mining of spatial and spectral information. By sharing spatial
information, it attempts to increase the spatial exploration
under the condition that the spectral content can be extracted.
The simplified structure of its network is displayed in Fig.
2(d). We can observe that the output of each 3D unit is fed
to the corresponding 2D unit. This parallel structure results
in module redundancy. Moreover, it can be seen from the
mathematical formula in Table I that there is no residual

connection between 2D and 3D unit. It hinders the information
flow of two units when the feature maps is changed. These
problems make it impossible to improve the representation
ability effectively. With respect to the above descriptions, it
can be concluded that how to combine the two is urgent in
the presence of 2D and 3D unit. Motivated by this, we design
a new structure to explore hyperspectral image SR in this
paper. The model alternately employ 2D and 3D units (see Fig.
2(c)), which greatly reduces the complexity of feature learning
within 3D unit and effectively promotes the optimization of
the whole network.

III. PROPOSED METHOD

In this section, we describe the proposed method in detail
from the following aspects, including network structure, en-
hanced hybrid convolution module, and 2D/3D unit.

A. Network Structure

As shown in Fig. 3, the proposed ERCSR mainly con-
tains three parts: feature extraction, image reconstruction, and
residual skip connection. For hyperspectral image SR, let
ILR ∈ RL×W×H and ISR ∈ RL×rW×rH denote the input
LR hyperspectral image and reconstructed SR hyperspectral
image, respectively, where W and H are the width and
height of each band in the spatial domain, L represents the
total number of the bands. The scale factor r is scale that
specifies the desired size of the generated HR image for the
LR image. As described in Section I, hypersepctral image SR
requires attention to the reconstruction of space and spectrum.
Therefore, we utilize separable 3D convolution (it is defined
as SConv in Fig. 3) that has been proved to be comparable
to the performance of regular 3D convolution [40] (see Fig.
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Fig. 3. Overall architecture of our proposed ERCSR.
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Fig. 4. Architecture of enhanced hybrid convolution module (E-HCM).

5(a)) to extract shallow spectral information after reshaping
ILR into four dimensions (1× L×W ×H), i.e.,

F0 = fsconv3D(unsqueeze(ILR)), (1)

where unsqueeze(·) is used to expand ILR, and fsconv3D(·)
denotes separable 3D convolution operation. Then, these initial
features are fed into enhanced hybrid convolution module (E-
HCM). Assuming that we have D E-HCMs in network, the
output FD are denoted as

FD = JD(JD−1((...J1(F0)...))), (2)

where Jd(·) denotes the d-th E-HCM. After obtaining hierar-
chical features by D E-HCMs, they are concatenated together
to enable the network to learn more effective information.
Through 1× 1× 1 convolution and separable 3D convolution,
we finally acquire the output FDR for feature extraction part
after long skip connection, i.e.,

FDR = FDF + F0. (3)

With respect to the part of image reconstruction, we upsample
FDR in HR space by transposed convolution according to r,
which is followed by a separable 3D convolution. As the input
and output images are largely similar, an additional cross-space
residual FC is introduced to upsample the input LR image
to HR space by nearest. It can greatly alleviate the burden
on the model. After the feature maps are squeezed in three
dimensions (L×W ×H), the output ISR is finally obtained
by

ISR = squeeze(fsconv3D(up(FDR))) + FC , (4)

where up(·) represents 3D transposed convolution layer, and
squeeze(·) is squeeze function.

B. Enhanced Hybrid Convolution Module

Now we present the proposed E-HCM, whose structure is
depicted in Fig. 4. The module is composed of 3D unit, 2D
unit, and two reshape operations. First, we utilize 3D unit to
analyze the relationship of spectrum and either horizontal or
vertical direction in space. To increase the spatial exploration
of image under the condition that the spectral content can
be obtained, the feature maps after 3D unit are reshaped
in four dimensions to perform 2D convolution. Concretely,
assume that the size of feature maps is N ×C ×L×W ×H
when the batch size N is considered, where C is the number
of filters. To transform it, we treat each band separately in
our work. The channel L and N are integrated together, i.e.,
N ∗L×C ×W ×H . By doing so, there are two benefits. On
the one hand, the design of 2D convolution in the network
is beneficial to easily optimize network in contrast to 3D
convolution. On the other hand, the whole network can more
focus on spatial information to improve the spatial learning
ability, when the spectral information can be extracted. We
also adopt two local residual connections at the end of this
module. It not only facilitates information fusion within the
3D unit, but also makes it easier for the network to study 2D
features in 2D unit. Both of them improve the optimization of
the whole model. As for the output of d-th module, it can be
represented as

Fd = Fd,2 + Fd,0 + Fd−1. (5)

Our proposed module appears alternately through 2D and
3D units, which greatly reduces the complexity of 3D feature
learning. It solves the problem of redundancy caused by
parallel structure in MCNet [30]. Importantly, compared with
the network using 3D unit, i.e., 2D unit is replaced by 3D unit,
it can not only reduce the size of the model, but also improve
the performance of the model.

C. 3D Unit

Previous methods [28], [30], [31], [33] lack the joint anal-
ysis between spectrum and horizontal or vertical dimension
in space. It results in the poor representation ability of the
network. To address this issue, the split adjacent spatial and
spectral convolution (SAEC) is designed to parallelly handle
the relationship of spectrum with either horizontal or vertical
direction at the front end of the module. The architecture is
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shown in Fig. 5(c). It is natural decomposition of a regular
3D convolution. Specifically, the input Fd−1 is processed by a
convolution layer with the filter 1×k×k, which is applied to
explore spatial content. To study the relationship of spectral
dimension and other dimensions, the filter k×k×k is separated
in two forms, i.e., k×1×k and k×k×1. Through an addition
operation, we have

T = σ(fss(Fd−1)), (6)

Fd,0 = fsh(T ) + fsv(T ), (7)

where fss(·), fsh(·), and fsv(·) represent convolution oper-
ations for space, spectrum and horizontal, and spectrum and
vertical, respectively. By separating the filter, it can jointly
mine the information of spectrum and other two directions,
which effectively alleviates the spectral distortion of the re-
constructed image.

D. 2D Unit

Due to the strong representation ability of CNNs, the
performance of natural image SR has been greatly advanced
recently [21], [36], [41]. As for the mainstream methods of
natural image SR, the 2D convolution and residual connection
are often employed as the main module. Therefore, we utilize
the main module in natural image SR for reference to explore
spatial features. In our paper, the 2D unit consists of two
convolution layers, ReLU function, and residual connection,
which is shown in Fig. 5(b). Supposing the reshaped results
are still expressed as Fd,1 for d-th module, all processes for
first unit are summarized as

Fd,1 = fconv2D(σ(fconv2D(Fd,0))) + Fd,0, (8)

where Fd,1 is the output of first 2D unit, and fconv2D(·)
denotes 2D convolution operation. To learn more spatial
information, in our work, another 2D unit is added in this
module. Similarly, the reshaped results in second 2D unit are
still denoted as Fd,2. We finally obtain

Fd,2 = fconv2D(σ(fconv2D(Fd,1))) + Fd,1. (9)

Compared with all operations are done by 3D convolution,
our designed network can significantly reduce the number of
parameters. Furthermore, it can pay more attention to spatial
resolution, thus dramatically improving the performance.

IV. EXPERIMENTS

In this section, we evaluate our network both qualita-
tively and quantitatively. First, the benchmark datasets and
implementation details are provided. Then, we analyze the
effectiveness of model. Finally, we compare ERCSR to other
state-of-the-art methods on benchmark datasets.

A. Datasets

1) CAVE: The CAVE dataset was collected by a tunable
filter and a cooled CCD camera from range of 400 nm to 700
nm in steps of 10 nm. The 31-bands hyperspectral images
contains wide scenes, such as skin, drinks, vegetables, etc.
The spatial resolution of each hyperspectral image is 512×512
pixels.
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Fig. 5. Architecture of various convolutions. (a) Separable 3D convolution
in SSRNet [33]. (b) 2D convolution in 2D unit. (c) SAEC in 3D unit.

2) Harvard: The Harvard dataset was obtained by Nuance
FX, CRI Inc. camera from indoor or outdoor scenes under
daylight illumination. Compared with CAVE dataset, it has
more hyperspectral images (71 images). The size of each
hyperspectral image cube is 31× 1040× 1392.

3) Pavia Center: The Pavia Centre dataset was captured by
the ROSIS sensor over Pavia, nothern Italy. Unlike the above
datasets, it is hyperspectral remote sensing dataset and only
contains one image. The image consists of 1096× 715 pixels
and 102 spectral reflectance bands.

B. Implementation Details

As we introduced in Section IV-A, these datasets are cap-
tured via different hyperspectral imaging cameras. It indicates
that there is no the same attributes between them, which leads
to training each dataset individually. With respect to CAVE
and Harvard dataset, one can notice that they both consist of
dozens of images, which is unlike to the Pavia Centre dataset.
As for these two datasets, we randomly select 80% samples
from each dataset for training and the rest for testing. The
trained samples for CAVE and Harvard dataset are augmented
by randomly choosing 24 patches from each image. With
regard to Pavia Centre dataset, the top left 876×715 is selected
to train, and the rest of image is used to test. 108 patches are
randomly selected from the image to augment the training
samples. After getting these patches for three datasets, each
patch is scaled to 1, 0.75, and 0.5, respectively. Then, the
scaled patch is rotated by 90◦, 180◦, 270◦ and horizontally
flipped. Though bicubic interpolation, they are downsampled
to acquire LR image with size of L × 32 × 32, where L is
total number of band. Before feeding the mini-batch into the
network, the average value of training images is subtracted.

In our work, L1 loss function is employ to study the model.
The parameter k of the kernel is set to 3, and the number of
the filters is defined as 64. The optimizer ADAM (β1 = 0.9, β2
= 0.999) is adopted to learn designed network. The batch size
is 12. The total number of training epochs is 200. We initialize
the learning rate of all layers to 10−4, which is halved by each
35 epochs. Our algorithm is conducted on PyTorch framework
with NVIDIA GeForce GTX 1080 GPU.
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TABLE II
STUDY OF THE NUMBER OF E-HCM MODULE.

Evaluation metric 2 3 4 5
PSNR 44.980 45.219 45.332 45.339
SSIM 0.9737 0.9740 0.9740 0.9740
SAM 2.220 2.210 2.208 2.209

TABLE III
PERFORMANCE OF THE INFLUENCE OF DIFFERENT 3D CONVOLUTION

TYPES.

Type PSNR SSIM SAM Parameters
regular 3D convolution 45.109 0.9740 2.210 1.348M

separable 3D convolution 45.069 0.9739 2.208 1.102M
SAEC 45.332 0.9740 2.208 1.349M

C. Evalution Metrics

To qualitatively evaluate the performance of reconstructed
image, in our paper, three methods are adopted. They are
Peak Signal-to-Noise Ratio (PSNR), Spectral Angle Mapper
(SAM), and Structural SIMilarity (SSIM), which are defined
as

PSNR =
1

L

L∑
l=1

10log10

(
MAX2

l

MSEl

)
, (10)

MSEl =
1

WH

W∑
w=1

H∑
h=1

(ISR(w, h, l)− IHR(w, h, l))
2
,

(11)
where MAXl is the maximal pixel value for l-th band, and
IHR denotes HR hyperspectral image.

SSIM =
1

L

L∑
l=1

(
2µl

ISR
µl
IHR

+ c1
) (

2σl
ISRIHR

+ c2
)

m ∗ n
, (12)

m = (µl
ISR

)2 + (µl
IHR

)2 + c1, (13)

n = (σl
ISR

)2 + (σl
IHR

)2 + c2, (14)

where µl
ISR

and µl
IHR

represent the mean of ISR and IHR

for l-th band. σl
ISR

and σl
IHR

denote the variance of ISR and
IHR for l-th band. σl

ISRIHR
is the covariance between ISR

and IHR for l-th band. c1 and c2 are the constants to avoid

SAM = arccos

(
< ISR, IHR >

||ISR||2||IHR||2

)
, (15)

where arccos(·) is arccos function. < ·, · > is dot product.
|| · ||2 denotes the L2 norm.

D. Model Analysis

In this section, we investigate the proposed model on CAVE
dataset in details from four aspects, including the number of
module D, the study of SAEC and E-HCM, and ablation study.

TABLE IV
PERFORMANCE ANALYSIS OF THE COMBINATION OF DIFFERENT UNITS.

THE BOLD INDICATES THE APPROACH USED IN THIS PAPER.

Type PSNR SSIM SAM Parameters
2D unit 45.129 0.9738 2.217 1.201M
3D unit 44.991 0.9737 2.220 1.645M

2D unit and 3D unit 45.125 0.9739 2.227 1.053M
two 2D units and 3D unit 45.332 0.9740 2.208 1.349M
three 2D units and 3D unit 45.308 0.9738 2.228 1.645M
2D unit and two 3D units 45.283 0.9740 2.223 1.497M

2D unit and three 3D units 45.301 0.9738 2.232 1.941M

TABLE V
ABLATION STUDY ABOUT THE COMPONENTS.

Component Different combinations of components
2D unit

√
×

√ √

3D unit ×
√ √ √

residual connection × × ×
√

PSNR 44.974 44.778 45.195 45.332
SSIM 0.9737 0.9736 0.9739 0.9740
SAM 2.216 2.227 2.210 2.208

1) Study of Module D: To determine that how many E-
HCM modules are appropriate, in our study, we set the
parameter D from 2 to 5 to analyze the influence for this part,
whose results are shown in Table II. As seen from this table,
this parameter has a significant impact on overall network
performance. Besides, the performance of three indices varies
greatly from 2 to 3, especially for PSNR. However, when
D is set to 4 and 5, the growth rates of PSNR, SSIM,
and SAM basically keep unchanged. It indicates that the
performance of the designed network tends to saturation. If the
depth of the network is further increased, its performance is
not significantly improved. Therefore, we empirically choose
D = 4 to implement the following experiments.

2) Study of SAEC: In our work, we design split adja-
cent spatial and spectral convolution (SAEC) to parallelly
explore the relationship of spectral dimension with others.
To verify the effectiveness of the proposed convolution, other
two convolution ways are introduced to replace SAEC. Table
III describes the performance for different convolution types.
Overall, SAEC produces superior results. As seen from this
table, the number of parameters using SAEC is basically the
same as that of regular 3D convolution. Under this case, there
is certain gap in the values of PSNR, and other indices almost
keep unchanged. Unlike the above two convolution ways, the
number of parameters adopting separate 3D convolution has
smaller than that of other types. However, its performance
is relatively poor. The reason for this is that there are few
parameters or no effective use of spectral information. By
contrast, our designed SAEC achieves the best performance,
which is mainly due to the joint analysis between spectrum
and other dimensions. It is beneficial to the mining of potential
information.

3) Study of E-HCM: As for E-HCM module, it consists of
one 3D unit, two 2D units, and two reshape operations. Here,
we replace these units in the module with the same type. Table
IV exhibits the experimental performance under the same unit.
Specifically, the 2D unit in each module is first replaced



7

TABLE VI
QUANTITATIVE EVALUATION OF STATE-OF-THE-ART SR ALGORITHMS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT SCALE FACTORS ON CAVE

DATASET. THE RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Scale factor Evalution metric Bicubic GDRRN [24] 3D-FCNN [28] EDSR [36] SSRNet [33] MCNet [30] ERCSR (ours)

×2
PSNR ↑ 40.762 41.667 43.154 43.869 44.991 45.102 45.332
SSIM ↑ 0.9623 0.9651 0.9686 0.9734 0.9737 0.9738 0.9740
SAM ↓ 2.665 3.842 2.305 2.636 2.261 2.241 2.218

×3
PSNR ↑ 37.562 38.834 40.219 40.533 40.896 41.031 41.345
SSIM ↑ 0.9325 0.9401 0.9453 0.9512 0.9524 0.9526 0.9527
SAM ↓ 3.522 4.537 2.930 3.175 2.814 2.809 2.789

×4
PSNR ↑ 35.755 36.959 37.626 38.587 38.944 39.026 39.224
SSIM ↑ 0.9071 0.9166 0.9195 0.9292 0.9312 0.9319 0.9322
SAM ↓ 3.944 5.168 3.360 3.804 3.297 3.292 3.243

10-th band

27-th band

Ground-truth Bicubic GDRRN 3D-FCNN

EDSR SSRNet MCNet ERCSRRGB

Ground-truth Bicubic GDRRN 3D-FCNN

EDSR SSRNet MCNet ERCSRRGB

Ground-truth Bicubic GDRRN 3D-FCNN

EDSR SSRNet MCNet ERCSRGrey Image

Fig. 6. Absolute error map comparisons for image fake and real lemons at 660 nm on CAVE dataset.

with 3D unit, and two reshape operations are removed. The
whole network stacked by 3D unit yields the worse results.
In the case of this unit alone, the network mainly does not
pay too much attention to spatial information mining, i.e.,
the number of feature extraction layers is the same for each
dimension in E-HCM. When all units are taken to be 2D unit,
it attains relatively better results. However, this way ignores the
exploration of spectral information. For hyperspectral image
SR, the aim of adopting spectral information is to enhance the
performance of spatial resolution. As for the network with 2D
and 3D units, when the spectral information can be extracted,
the design of 2D units is helpful to improve the spatial learning
ability of the whole network. Therefore, the combinations of
different 2D and 3D units overall produce the better results
in contrast to single unit. Among these combinations, we can
find that both one 3D unit and two 2D units generate the best
performance, and the number of network parameters is small.
The combination not only considers the spectral information,
but also can design more 2D convolution layers to extract
features. It makes the performance of the three metrics better
than that of other combinations.

4) Ablation Study: The proposed model mainly has three
parts: feature extraction, image reconstruction, and residual
skip connection. E-HCM in these parts is the main module of
the whole network. In this section, we investigate the influence
of different combinations about E-HCM on the performance
of the model. Table V provides the ablation study about
these combinations. Specifically, the E-HCM only has 2D or
3D unit, and the other components are removed. Their results
are poor, particularly when the module exists 3D unit. As
we introduced in Section I, the purpose using spectrum is to

TABLE VII
COMPARISON OF THE NUMBER OF PARAMETERS OF THE ALGORITHM.

Method ×2 ×3 ×4
Bicubic — — —

GDRRN [24] 219k 219k 219k
3D-FCNN [28] 39k 39k 39k

EDSR [36] 1404k 1589k 1552k
SSRNet [33] 830k 941k 1076k
MCNet [30] 1928k 2039k 2174k

ERCSR (ours) 1349k 1459k 1595k

improve the performance of spatial reconstruction. From this
point of view, the above situation is caused by paying too
much attention to spectral information, while ignoring spatial
information mining. When there are both 2D and 3D units
without residual connection, the overall performance is obvi-
ously better than that of single unit. It indicates the structure
that appears alternately through both units can improve the
representation ability in space through spectral knowledge. It
reveals that these components are an indispensable part for
studying model. Finally, all components are attached to the
module. We can notice that all results in three aspects are
superior to any other combinations. Through these analyses, it
can be concluded that each component contributes to network
learning and optimization.

E. Comparisons with the State-of-the-art Methods

In this section, we make a comprehensive comparison of
the six existing methods with the proposed ERCSR. They
include Bicubic, GDRRN [24], 3D-FCNN [28], EDSR [36],
SSRNet [33], and MCNet [30]. Three benchmark datasets,
CAVE, Harvard, and Pavia Centre, are employed to verify
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(20,20)

(340,340)

(100,100)

Fig. 7. Visual comparison of spectral distortion for image fake and real lemons at pixel position (20, 20), (100, 100), and (340, 340) on CAVE dataset.

TABLE VIII
QUANTITATIVE EVALUATION OF STATE-OF-THE-ART SR ALGORITHMS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT SCALE FACTORS ON HARVARD

DATASET. THE RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Scale factor Evalution metric Bicubic GDRRN [24] 3D-FCNN [28] EDSR [36] SSRNet [33] MCNet [30] ERCSR (ours)
PSNR ↑ 42.833 44.213 44.454 45.480 46.247 46.263 46.372
SSIM ↑ 0.9711 0.9775 0.9778 0.9824 0.9825 0.9827 0.9832×2
SAM ↓ 2.023 2.278 1.894 1.921 1.884 1.883 1.875
PSNR ↑ 39.441 40.912 40.585 41.674 42.650 42.681 42.783
SSIM ↑ 0.9411 0.9523 0.9480 0.9592 0.9626 0.9627 0.9633×3
SAM ↓ 2.325 2.623 2.239 2.380 2.209 2.214 2.180
PSNR ↑ 37.227 38.596 38.143 39.175 40.001 40.081 40.211
SSIM ↑ 0.9122 0.9259 0.9188 0.9324 0.9365 0.9367 0.9374×4
SAM ↓ 2.531 2.794 2.363 2.560 2.412 2.410 2.384

Ground-truth Bicubic GDRRN 3D-FCNN

EDSR SSRNet MCNet ERCSRGrey Image

27-th band

Ground-truth Bicubic GDRRN 3D-FCNN

EDSR SSRNet MCNet SFCSRRGB

10-th band

Fig. 8. Absolute error map comparisons for image imgd5 at 680 nm on Harvard dataset.

the effectiveness of the proposed ERCSR for different scale
factors. Note that unlike other two datasets, the Pavia Centre
dataset is hyperspectral remote sensing dataset.

1) CAVE Dataset: Table VI depicts the quantitative evalu-
ations of the state-of-the-art SR algorithms for different scale
factors on CAVE dataset. One can observe that our ERCSR
outperform best performance than other competitors in three
metrics. Among these algorithms, GDRRN and EDSR adopt
2D convolution to conduct SR task, while other several deep
learning methods utilize 3D convolution. We can find that
the overall performance of the network using 3D convolution
is better than that of using 2D convolution network. This is
due to the fact that 3D convolution can effectively utilize the
spectrum, thus improving feature exploration. Note that since
the output size of the 3D-FCNN is changed, the results are
actually accurate. Compared with the second best algorithm,
MCNet, our method attains excellent performance. In particu-
lar, the proposed model is higher than MCNet in terms of three
metrics for scale factor ×4 (+0.130 dB, +0.0007, and -0.026).

Moreover, the number of parameters of designed ERCSR is
also lower than that of MCNet, which is shown in Tbale VII.

We adopt qualitative way to further analyze our method. To
simply do comparison, in our paper, only one reconstructed
hyperspectral image in this dataset for scale factor ×4 is
displayed, and the image in one band is presented. Since the
ground-truth is grey image, to show some edge information
clearly, the absolute error map between ground-truth and
reconstructed hyperspectral image is employed. Fig. 6 provides
the visual results of several algorithms. We can notice that
our proposed ERCSR generates shallow edges or no edges in
some regions, while other algorithms exhibit obvious texture
information. Finally, we also visualize the spectral distortion
of reconstructed image by selecting three pixels (see Fig. 7).
As mentioned above, the output size of 3D-FCNN becomes
small, so only part of the band is depicted. Among these
methods, they obtain almost the same results at different
pixels. Moreover, all of them can maintain the spectrum of
the reconstructed image.
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(20,20)

(340,340)

(100,100)

Fig. 9. Visual comparison of spectral distortion for image imgd5 at pixel position (20, 20), (100, 100), and (340, 340) on Harvard dataset.

TABLE IX
QUANTITATIVE EVALUATION OF STATE-OF-THE-ART SR ALGORITHMS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT SCALE FACTORS ON PAVIA

CENTRE DATASET. THE RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Scale factor Evalution metric Bicubic GDRRN [24] 3D-FCNN [28] EDSR [36] SSRNet [33] MCNet [30] ERCSR (ours)
PSNR ↑ 32.383 33.762 34.540 35.515 35.397 35.404 35.422
SSIM ↑ 0.9020 0.9280 0.9427 0.9500 0.9493 0.9493 0.9498×2
SAM ↓ 4.059 4.317 3.472 3.437 3.448 3.445 3.435
PSNR ↑ 29.343 30.369 30.519 31.222 31.214 31.203 31.230
SSIM ↑ 0.7982 0.8407 0.8503 0.8701 0.8685 0.8679 0.8690×3
SAM ↓ 5.060 5.662 4.239 4.708 4.659 4.689 4.650
PSNR ↑ 27.672 27.988 28.494 28.684 28.902 28.907 28.912
SSIM ↑ 0.7080 0.7301 0.7621 0.7730 0.7802 0.7796 0.7786×4
SAM ↓ 5.776 5.988 4.950 5.654 5.577 5.587 5.534

Ground-truth Bicubic GDRRN 3D-FCNN

EDSR SSRNet MCNet SFCSRGrey Image

20-th band

Ground-truth Bicubic GDRRN 3D-FCNN

EDSR SSRNet MCNet SFCSRGrey Image

80-th band

Fig. 10. Absolute error map comparisons for 20-th band image on Pavia Centre dataset.

2) Harvard Dataset: Similar to the results on CAVE
dataset, Table VIII also displays that our ERCSR can outper-
form well in every aspect. With respect to GDRRN algorithm,
it achieves the lowest results due to the design of a shallower
network. Due to the deep design, the EDSR, which also
adopts 2D convolution, attains very good performance. Nev-
ertheless, there is still some performance gap compared with
those networks that exploit 3D convolution. As for SSRNet
algorithm, it focuses too much on the spectral dimension
and ignores the spatial dimension, which leads to the poor
performance. Although MCNet builds the network aiming at
the problems existing in SSRNet, the results obtained by the
two are basically the same. From our point of view, it is
caused by the failure to make full use of the output of 2D unit.
Considering this limitation, our proposed model utilizes two
types of units to perform alternately, thus obtaining significant
superiority.

We also illustrate a visual example for scale factor ×4,
which is presented in Fig. 8. We can find that our method can

also obtain relatively low error values, and the edge informa-
tion of some objects is particularly weak. Unlike the visual
result for image fake and real lemons, the spectral curves
yield relatively large distinctions, particularly for 3D-FCNN
and Bicubic (see Fig. 9). Although there is a certain deviation
between the spectral curves acquired by these methods and
the corresponding ground-truth (such as at pixel position (20,
20)), in most cases, the spectral curves generated by ERCSR
are closer to the ground-truth. It demonstrates the proposed
ERCSR attains better spectral fidelity, which makes it possible
to use spectral band analysis in practical application.

3) Pavia Centre Dataset: The above datasets are not hy-
perspectral remote sensing data. To comprehensively illustrate
the effectiveness of the proposed algorithm, the Pavia Uni-
versity dataset that belongs to hyperspectral remote sensing
image is utilized for further evaluation. As shown in Table
IX, compared with other two datasets, our approach is not
that superior in this dataset. As can seen from this table,
almost all the models achieve good result only on some
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(20,20)

(200,200)

(100,100)

Fig. 11. Visual comparison of spectral distortion at pixel position (20, 20), (100, 100), and (200, 200) on Pavia Centre dataset.

Fig. 12. Illustration of Pavia Centre hyperspectral image. The red box
indicates that the pixel value in the area is 0.
evaluation metrics of some scale factors. The main reason
for this phenomenon is that there is no data in the part of
the image, i.e., the pixel value is 0 (see Fig. 12). It prevents
these algorithms from effectively optimizing the network. As a
whole, EDSR has better performance on small scale factor. As
for large scale factor, the number of parameters of our method
is approximately the same as that of EDSR (see Table VII), but
the proposed ERCSR can get satisfactory results. Similarly,
it produces comparable performance in visual comparisons
about absolute error map and spectral distortion in Figs. 10
and 11. According to the above investigations, that is enough
to verify our approach presents remarkable performance both
in quantity and quality.

V. CONCLUSION

In our paper, we develop a new structure for hyperspectral
image super-resolution by exploring the relationship between
2D/3D convolution (ERCSR). To learn more spatial informa-
tion when spectral features are extracted, our method alter-
nately employs 2D and 3D units to analyze during recon-
struction. It greatly reduces the complexity of feature learning
within the 3D unit, so as to improve the efficiency of the
model. Different from previous work, our method adopts a
novel way, namely split adjacent spatial and spectral convolu-
tion (SAEC), to parallelly study the features between spectrum
and other directions. Extensive experiments on widely used
benchmark datasets demonstrate that our ERCSR attains better
performance against the state-of-the-art methods in terms of
PSNR, SSIM, and SAM. In particular, as for Harvard dataset,
compared with the second best method, the accuracies of the
proposed ERCSR in PSNR and SSIM increase by 0.130 dB
and 0.0367 for scale factor ×4, and its SAM decreased by
0.026.

In the future, we intend to extend the proposed method from
two aspects. As for enhanced hybrid convolution module (E-
HCM), how to combine 2D/3D convolution is better? We can
use network architecture search (NAS) by setting rules to get
the optimal structure. Moreover, in our proposed SAEC, is it
better to do the addition operation directly or other similar
concatenation operations? All of the above can be optimized
to further optimize the network structure and thus improve the
performance of the whole model.
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